首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   955篇
  免费   93篇
  国内免费   1篇
  2023年   4篇
  2022年   6篇
  2021年   21篇
  2020年   12篇
  2019年   12篇
  2018年   16篇
  2017年   13篇
  2016年   28篇
  2015年   43篇
  2014年   62篇
  2013年   66篇
  2012年   76篇
  2011年   56篇
  2010年   32篇
  2009年   38篇
  2008年   47篇
  2007年   62篇
  2006年   53篇
  2005年   50篇
  2004年   49篇
  2003年   48篇
  2002年   40篇
  2001年   30篇
  2000年   40篇
  1999年   38篇
  1998年   14篇
  1997年   10篇
  1996年   4篇
  1995年   11篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   9篇
  1988年   3篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1975年   1篇
  1974年   2篇
  1969年   2篇
  1968年   1篇
  1874年   1篇
排序方式: 共有1049条查询结果,搜索用时 24 毫秒
81.
The stabilization of optimum pH for cells can cause a higher erythropoietin (EPO) production rate and a good growth rate with the prolonged culture span in recombinant Chinese hamster ovary (r-CHO) cells. Our strategy for stabilizing the optimum pH in this study is to reduce the lactate production by adding sodium lactate to a culture medium. When 40 mM sodium lactate was added, a specific growth rate was decreased by approximately 22% as compared with the control culture. However the culture longevity was extended to 187 h, and more than a 2.7-fold increase in a final accumulated EPO concentration was obtained at 40 mM of sodium lactate. On the condition that caused the high production of EPO, a specific glucose consumption rate and lactate production rate decreased by 23.3 and 52%, respectively. Activity of lactate dehydrogenase (LDH) in r-CHO cells increased and catalyzed the oxidation of lactate to pyruvate, together with the reverse reaction, at the addition of 40 mM sodium lactate. The addition of 40 mM sodium lactate caused the positive effects on a cell growth and an EPO production in the absence of carbon dioxide gas as well as in the presence of carbon dioxide gas by reducing the accumulation of lactate.  相似文献   
82.
83.
Stereoselective functionalization of the 1'-position of 4'-thionucleosides was achieved using a stereoselective S(N)2 reaction controlled by 5-membered ring coordination.  相似文献   
84.
In obesity, adipocyte hypertrophy and proinflammatory responses are closely associated with the development of insulin resistance in adipose tissue. However, it is largely unknown whether adipocyte hypertrophy per se might be sufficient to provoke insulin resistance in obese adipose tissue. Here, we demonstrate that lipid-overloaded hypertrophic adipocytes are insulin resistant independent of adipocyte inflammation. Treatment with saturated or monounsaturated fatty acids resulted in adipocyte hypertrophy, but proinflammatory responses were observed only in adipocytes treated with saturated fatty acids. Regardless of adipocyte inflammation, hypertrophic adipocytes with large and unilocular lipid droplets exhibited impaired insulin-dependent glucose uptake, associated with defects in GLUT4 trafficking to the plasma membrane. Moreover, Toll-like receptor 4 mutant mice (C3H/HeJ) with high-fat-diet-induced obesity were not protected against insulin resistance, although they were resistant to adipose tissue inflammation. Together, our in vitro and in vivo data suggest that adipocyte hypertrophy alone may be crucial in causing insulin resistance in obesity.  相似文献   
85.
86.
Genomic instability, a major hallmark of cancer cells, is caused by incorrect or ineffective DNA repair. Many DNA repair mechanisms cooperate in cells to fight DNA damage, and are generally regulated by post-translational modification of key factors. Poly-ADP-ribosylation, catalyzed by PARP1, is a post-translational modification playing a prominent role in DNA repair, but much less is known about mono-ADP-ribosylation. Here we report that mono-ADP-ribosylation plays an important role in homologous recombination DNA repair, a mechanism essential for replication fork stability and double strand break repair. We show that the mono-ADP-ribosyltransferase PARP14 interacts with the DNA replication machinery component PCNA and promotes replication of DNA lesions and common fragile sites. PARP14 depletion results in reduced homologous recombination, persistent RAD51 foci, hypersensitivity to DNA damaging agents and accumulation of DNA strand breaks. Our work uncovered PARP14 as a novel factor required for mitigating replication stress and promoting genomic stability.  相似文献   
87.
Ginsenoside Rg5 is a compound newly synthesized during the steaming process of ginseng; however, its biological activity has not been elucidated with regard to endothelial function. We found that Rg5 stimulated in vitro angiogenesis of human endothelial cells, consistent with increased neovascularization and blood perfusion in a mouse hind limb ischemia model. Rg5 also evoked vasorelaxation in aortic rings isolated from wild type and high cholesterol-fed ApoE−/− mice but not from endothelial nitric-oxide synthase (eNOS) knock-out mice. Angiogenic activity of Rg5 was highly associated with a specific increase in insulin-like growth factor-1 receptor (IGF-1R) phosphorylation and subsequent activation of multiple angiogenic signals, including ERK, FAK, Akt/eNOS/NO, and Gi-mediated phospholipase C/Ca2+/eNOS dimerization pathways. The vasodilative activity of Rg5 was mediated by the eNOS/NO/cGMP axis. IGF-1R knockdown suppressed Rg5-induced angiogenesis and vasorelaxation by inhibiting key angiogenic signaling and NO/cGMP pathways. In silico docking analysis showed that Rg5 bound with high affinity to IGF-1R at the same binding site of IGF. Rg5 blocked binding of IGF-1 to its receptor with an IC50 of ∼90 nmol/liter. However, Rg5 did not induce vascular inflammation and permeability. These data suggest that Rg5 plays a novel role as an IGF-1R agonist, promoting therapeutic angiogenesis and improving hypertension without adverse effects in the vasculature.  相似文献   
88.
89.
90.
G-protein coupled receptors (GPCRs) constitute the largest family of intercellular signaling molecules and are estimated to be the target of more than 50% of all modern drugs. As with most integral membrane proteins (IMPs), a major bottleneck in the structural and biochemical analysis of GPCRs is their expression by conventional expression systems. Cell-free (CF) expression provides a relatively new and powerful tool for obtaining preparative amounts of IMPs. However, in the case of GPCRs, insufficient homogeneity of the targeted protein is a problem as the in vitro expression is mainly done with detergents, in which aggregation and solubilization difficulties, as well as problems with proper folding of hydrophilic domains, are common. Here, we report that using CF expression with the help of a fructose-based polymer, NV10 polymer (NVoy), we obtained preparative amounts of homogeneous GPCRs from the three GPCR families. We demonstrate that two GPCR B family members, corticotrophin-releasing factor receptors 1 and 2β are not only solubilized in NVoy but also have functional ligand-binding characteristics with different agonists and antagonists in a detergent-free environment as well. Our findings open new possibilities for functional and structural studies of GPCRs and IMPs in general.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号